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where fxc may be a complicated function of the charge
density n(r) and u=n(r)u. A small variation in n(r) results inWhite andBird have recently found anew way tocalculate gradient

corrections to the exchange-correlation potential in crystals which
requires the use of fast Fourier transforms (FFT) and which for a fixed
FFT mesh size has much greater numerical accuracy than the stan- dExc 5 E dExc

dn(r)
dn(r) dr 5 E F fxc

n(r)dard method. We demonstrate that FFT’s can be avoided and show
how the method can be applied to atoms. Q 1997 Academic Press

1 E fxc

=n(r9)
·
d=n(r9)

dn(r)
dr9G dn(r) dr (2)

Density functional theory [1] has been the mainstay of
solid state electronic structure calculations for 30 years but

5 E F fxc

n(r)
2 = ·

fxc

=n(r)G dn(r) dr,
it is only with the advent of generalized gradient approxima-
tions [2, 3] (GGA) that the method has been able to compete
with the methods used by chemists for atoms and molecules. where the last step uses an integration by parts and dn(r)/
White and Bird [4] recently demonstrated a new way with dn(r9) 5 d(r 2 r9). Thus the exchange-correlation poten-
important computational advantages to implement solid tial is
state GGA calculations in which the charge density is ex-
panded in plane waves. One purpose of this paper is to intro-
duce the method to atomic and molecular physicists who vxc(r) 5

dExc

dn(r)
5

fxc

n(r)
2 = ·

fxc

=n(r)
. (3)

have not used it heretofore. Because the standard method
of applying the GGA involves gradients of absolute values

One can see that vxc will contain terms of the form =n · =of gradients, whereas the White–Bird method (WBM) does
u=nu. Noting that =u=nu 5 =u=nu2/2u=nu has eight times asnot; for equal accuracy the standard method requires an
many reciprocal lattice vectors as n (which itself has eightexpansion in many more basis functions (as shown below,
times as many as the crystal wave functions are expandedeight times more when the basis functions are plane waves).
in), White and Bird [4] suggested that vxc be obtained onHowever, the main purpose of this paper is to demonstrate
a finite grid using the first form of dExc in Eq. (2), i.e.,how the WBM can also be applied in numerical calculations

where no basis functions are used and the charge density is
known only on a set of unequally spaced mesh points and, ṽxc(R) 5

f
n(R)

1 O
R9

fxc

=n(R9)
·
d=n(R9)

dn(R)
. (4)

furthermore, that in this case also, the WBM is the more
accurate method. For the neon atom, which will be our com-
putational example, the density of mesh points that can be

Writing n(r) in terms of its Fourier transforms n(G),
used is so large that the additional accuracy of the WBM is

they obtain
of no practical importance; however, when finite difference
methods, involving a three-dimensional mesh, are used for
large molecular calculations, the additional accuracy of the =n(r) 5 O

G
iGn(G)eiG · r 5

1
N O

G,R
iGn(R)eiG · (r2R), (5)

WBM will be important.
The exchange-correlation energy density functional [1]

may be approximated by and setting r 5 R9 they evaluate the last term in Eq. (4)
and note that ṽxc requires no more reciprocal lattice vectors

Exc[n] 5 E fxc(n(r), u=n(r)u) dr, (1) than those in which n is expanded. Equation (4) must be
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tial decay of n(r) at small r. Then taking this analytic ex-
pression to be the charge density for which we wish to
evaluate the GGA, we are able to compare ṽxc(Ri) and
vxc(Ri), obtained using numerical derivatives, with the ex-
act vxc(Ri) obtained analytically. We use the Herman–
Skillman [5] mesh but with the points four times as dense;
i.e., the minimum mesh spacing is

d 5 (3f/4)2/3Z21/3/3200 5 2.568369156 3 1024 bohr, (8)

where Z 5 10 is the atomic number and the mesh spacing
doubles every 160 mesh points. This will be referred to as
the 43 mesh; 83 and 23 meshes will also be discussed.
Vxc , the gradient term of the exact vxc (i.e., the second
term of Eq. (3)), is plotted in Fig. 1. The upward pointing
tick marks along the top of the figure are the mesh doubling
points. This term blows up like 21/r. Its values at 160 d
and at d are 22.2371 Ry and 2274.599 Ry, respectively.
To numerically evaluate the first and second derivatives
of n with respect to r at Rj which occur in Vxc(Rj), we fit
the charge density between Rj24 and Rj14 with the LagrangeFIG. 1. The gradient term of the analytic vxc .
interpolation formula [6]. However, if the mesh size dou-
bles between those points, some points are discarded so
that the remaining points occur in pairs which are equidis-

generalized for atomic calculations to account for the fact tant from Rj .
that even if the mesh points are evenly spaced, each point Figure 2 is a plot of DVxc , the difference between the
represents a different volume (proportional to R2). Write numerically and analytically determined Vxc . The same

Exc 5 O
i

fxc(n(Ri), =n(Ri))Vi , (6)

where Vi is the volume associated with Ri . Then

ṽxc(Rj) 5
1
Vj

dExc

dn(Rj)
5

fxc

n(Rj)
(7)
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=n(Ri)
·
d=n(Ri)
dn(Rj)

.

In a crystal the sum is usually over an equally spaced lattice
so that Vi/Vj 5 1 and Eq. (7) reduces to Eq. (4). Note that
d=n(r9)/dn(r) 5 dd(r9 2 r)/dr9. While it is obvious that,
with a large enough number of G’s in the sum, the deriva-
tive of =n(r) with respect to n(R9) will approximate the
derivative of a delta function (with an infinite number it
is the derivative of a delta function), it is not at all obvious
that one can, on an atomic mesh, fit n(Ri) at a set of points
around Rj and then sum the derivatives with respect to
n(Rj) of the gradients of this fit at the Ri and obtain a
ṽxc(Rj) which is identical to vxc(Rj).

We use the GGA of Perdew and Wang [2] known as
PW GGA II. To test the accuracy of the formulation we FIG. 2. The difference between the gradient terms of vxc obtained
first fit the charge density of neon with 19 gaussians and with the standard numerical formulation and analytically. A nine-point

interpolation scheme and the 43 mesh is used.one exponential, the latter to get a good fit to the exponen-
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finer the mesh the better the nine-point fit. (The fit is, of
course, exact at the nine points at which it is made; it is
the interpolation between those points and, hence, the
derivatives of n(r) evaluated at Rj which are approximate.)
But with Cray single precision, the rounding error begins
to be impotant with an 83 mesh which doubles DṼxc and
quadruples DVxc with respect to the 43 mesh. With a 23
mesh DṼxc and DVxc are both larger at large r, where the
mesh is too coarse, and smaller on average at small r.
Figure 4 is a plot of DVxc with the 43 mesh but with the
nine-point fit replaced by a seven-point fit. At the sixth
mesh doubling point the mesh spacing becomes too large
for the seven-point fit to yield accurate second derivatives
of n(r) and there is a large jump in DVxc which falls off as
n(r) gets smoother with increasing r until the seventh mesh
doubling point where another jump occurs which is much
larger relative to Vxc than the preceding one. The effect
of a seven-point mesh on DṼxc shown in Fig. 5 is even
more dramatic. The large error beyond the sixth doubling
point is due to a loss in accuracy in d=n(Ri)/dn(Rj). The
very large glitches at the two doubling points arise from the
fact that because they are multiplied by an antisymmetric

FIG. 3. The difference between the gradient terms of ṽx obtained
function, differences occur between fxc/=n(Ri) evaluatedwith White and Bird’s formulation and vxc obtained analytically. A nine-
at Ri on opposite sides of and equidistant from the doublingpoint interpolation scheme and the 43 mesh is used.
point Rj . The errors in the first derivatives of n(r) occurring
in fxc/=n(Ri) are still not significant, as long as they
change smoothly, but around the doubling point theynine-point fit is made at nine Ri around Rj to evaluate

d=n(Ri)/dn(Rj). The fit of n(r) at nine points around Ri is change rapidly because the mesh used to evaluate them is
of the form n(r) 5 o4

k524 Ak(r)n(Ri1k). Thus =n evaluated
at Ri is just o4

k524 A9k(Ri)n(Ri1k) and the derivative with
respect to n(Rj) yields a di1k, j so that d=n(Ri)/dn(Rj) 5
A9j2i(Ri). The fxc/=n(Ri) which multiplies this is a function
of n(Ri) and =n(Ri) and is straightforward to evaluate. One
can see from the interpolation formula that this maintains
the antisymmetry of the derivative of the delta function it
replaces; this is the reason the Ri must be chosen to be in
equidistant pairs around Rj . It is not at all obvious that
the dependence of =n(Ri) on n(Rj) more than four mesh
points away can be ignored but we immediately see that
it can. Figure 3 is a plot of DṼxc , the difference between
the gradient parts of ṽxc and the analytic vxc . The first mesh
point (r 5 0), where vxc and ṽxc are infinite is obviously
not included in Figs. 2 and 3. Points 2, 3, and 4, where the
fit is not made at equidistant pairs is included in DVxc but
is off-scale in the inset by an order of magnitude; d=n(Ri)/
dn(Rj) has to be calculated with equidistant pairs. Using
one pair at the second mesh point and two at the third,
DṼxc 5 20.198 and 21.15 3 1026 Ry, respectively. Not
only is the numerical error represented by DṼxc half as
large as DVxc , over any small range of r it oscillates about
zero, whereas DVxc does not. Although these errors are
completely negligible, it is clear that ṽxc is more numerically
accurate than vxc . This is because vxc contains second deriv- FIG. 4. Same as Fig. 2, except a seven-point interpolation scheme

is used.atives of n(r) while ṽxc contains only first. In principle the
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standard formulation. We worked to several orders of mag-
nitude more accuracy than normal to demonstrate that the
two formulations are identical, but that their numerical
errors enter in different ways.

ACKNOWLEDGMENTS

This work was supported by the University of Texas High Performance
Computing Facility, the Welch Foundation (Houston, Texas) and the
National Science Foundation under Grants DMR 93136745 and DMR
9614040.

REFERENCES

1. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev.
B 136, 864 (1964). [W. Kohn and L. J. Sham, Self-consistent equations
including exchange and correlation effects, Phys. Rev. A 140, 1133
(1965).]

2. J. P. Perdew, Unified theory of exchange and correlation beyond the
local density approximation, in Electronic Structure of Solids, Vol. 91,
edited by P. Ziesche and H. Eschrig (Akad. Verlag, Berlin, 1991).

3. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and
surfaces: Applications of the generalized gradient approximation for
exchange and correlation, Phys. Rev. B 46, 6671 (1992).FIG. 5. Same as Fig. 3, except a seven-point interpolation scheme

4. J. A. White and D. M. Bird, Implementation of gradient-correctedis used.
exchange-correlation potentials in Car-Parinello total energy calcula-
tions, Phys. Rev. B 50, 4954 (1994).

5. F. Herman and S. Skillman, Atomic Structure Calculations (Prentice
Hall, Englewood Cliffs, NJ, 1963).changing. It is this failure of the errors in the first derivative

6. M. Abromowitz and Irene A. Stegun (Eds.), Handbook of Mathemati-of n(r) to cancel that causes the glitches.
cal Functions, (U.S.G.P.O., Washington, 1965). [National Bureau of

In conclusion, we have implemented White and Bird’s Standards Applied Mathematics, Ser. 55. The form given by Eqs.
formulation of the GGA for atoms and shown that the (25.2.6)–(25.2.7) results in less rounding error than Eqs. (25.2.1)–

(25.2.2).]numerical error incurred can be smaller than that of the


